B7-H3 participates in the development of Asthma by augmentation of the inflammatory response independent of TLR2 pathway
نویسندگان
چکیده
B7-H3, a new member of the B7 superfamily, acts as both a T cell costimulator and coinhibitor. Recent studies identified B7-H3 plays a critical role in the development of asthma. But the definitive mechanism is not clear. In this study, we further report that B7-H3 participates in the development of OVA-induced asthma in a murine model. And study its mechanism through the vitro and vivo experiment. Exogenous administration of B7-H3 strongly amplified the inflammatory response and augmented proinflammatory cytokines in vitro and vivo. These B7-H3-associated proinflammatory effects were not dependent on TLR2 signaling, as airway inflammation, eosinophils infiltration and cytokins (IL-4, IL-5, IL-13 and IFN-gamma) augment were still amplified in TLR2-deficient mice after administrated recombinant mouse B7-H3. These results indicated an important role for B7-H3 in the development of Th1 and Th2 cells in a murine model of asthma and its proinflammatory effects are not dependent on TLR2 signaling.
منابع مشابه
B7-H3 participates in the development of experimental pneumococcal meningitis by augmentation of the inflammatory response via a TLR2-dependent mechanism.
In addition to a well-documented role in regulating T cell-mediated immune responses, B7-H3, a newly discovered member of the B7 superfamily, has been recently identified as a costimulator in the innate immunity-mediated inflammatory response. In this study, we further report that B7-H3 participates in the development of pneumococcal meningitis in a murine model. Exogenous administration of B7-...
متن کاملB7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis
The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response a...
متن کاملB7-H3 augments the inflammatory response and is associated with human sepsis.
B7-H3, a new member of the B7 superfamily, acts as both a T cell costimulator and coinhibitor, and thus plays a key role in the regulation of T cell-mediated immune responses. However, it is unclear whether B7-H3 is involved in the innate immune monocyte/macrophage-mediated inflammatory response. In this paper, we show that, although B7-H3 alone failed to stimulate proinflammatory cytokine rele...
متن کاملFiltered Kombucha Tea Rings the Bell for TLR2, TLR4, MYD88, and Dectin-1 in Mice Model of Colitis
Background and objectives: TLR2, TLR4, and Dectin-1 (Clec7) are pattern recognition receptors (PRRs) expressed by intestinal epithelia cells and MYD88 is a signaling molecule of TLR2 and TLR4. They warn immune system about the presence of invading pathogens promoting initiation of inflammatory response. Because of colonic cancer risk, therapy of intestinal inflammation is of h...
متن کاملB7-H3 contributes to the development of pathogenic Th2 cells in a murine model of asthma.
B7-H3 is a new member of the B7 family. The receptor for B7-H3 has not been identified, but it seems to be expressed on activated T cells. Initial studies have shown that B7-H3 provides a stimulatory signal to T cells. However, recent studies suggest a negative regulatory role for B7-H3 in T cell responses. Thus, the immunological function of B7-H3 is controversial and unclear. In this study, w...
متن کامل